The Glicksberg theorem for Tychonoff extension properties

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Proof of the Schauder - Tychonoff Theorem

We present a new proof of the version of the Shauder-Tychonov theorem provided by Coppel in Stability and Asymptotic Behavior of Differential Equations, Heath Mathematical Monographs, Boston (1965). Our alternative proof mainly relies on the Schauder fixed point theorem.

متن کامل

An extension of the Wedderburn-Artin Theorem

‎In this paper we give conditions under which a ring is isomorphic to a structural matrix ring over a division ring.

متن کامل

Extension of Krull's intersection theorem for fuzzy module

‎In this article we introduce $mu$-filtered fuzzy module with a family of fuzzy submodules.  It shows the relation between $mu$-filtered fuzzy modules and crisp filtered modules by level sets. We investigate fuzzy topology on the $mu$-filtered fuzzy module and apply that to introduce fuzzy completion. Finally we extend Krull's intersection theorem of fuzzy ideals by using concept $mu$-adic comp...

متن کامل

Tychonoff expansions with prescribed resolvability properties

Article history: Received 22 January 2009 Accepted 1 December 2009 MSC: primary 05A18, 03E05, 54A10 secondary 03E35, 54A25, 05D05

متن کامل

The Extension Theorem

Given a compact convex polyhedron, can it tile space in a transitive (or in a regular) way? We discuss in the paper the so-called extension theorem giving conditions under which there is unique extension of a finite polyhedral complex, which consists of replicas of the given polyhedron, to a global isohedral tiling. The extension theorem gives a way to get all possible regular tilings with the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2016

ISSN: 0166-8641

DOI: 10.1016/j.topol.2015.12.087